

BMW iX5 HYDROGEN.

THE EV WITH FAST REFUELING.

DR. JÜRGEN GULDNER
General Program Manager Hydrogen Technology

THE BMW GROUP IS COMMITTED TO THE PARIS AGREEMENT AND THE $1.5^{\circ} \mathrm{C}$ TARGET.

> First German OEM to join the "Ambition for $1.5^{\circ} \mathrm{C}$ ".
> Goal: climate neutrality along the entire value chain by 2050.
> Also part of the UN "Race to Zero" program.
... this requires:
> The use of all available technologies, including BEVs and FCEVs.
> Decarbonization of the entire value chain and life cycle.

MSCI - IMPLIED TEMPERATURE RISE INDEX. MSCI BMW GROUP aligned with Paris Agreement target.

BMW

 GROUP

Decarbonisation data

from 4. January 2023

THE DECARBONIZATION CHALLENGE.

BEVS AND FCEVS COMPLEMENT EACH OTHER.

> Technology:

both are EVs - FCEV enables fast refueling.
Customer:
BEVs fulfill most use cases - but not all. FCEV and BEV combined can help to decarbonize faster.
> Infriastructure:
2 are cheaper than 1.
> Energy system:
Cost and feasibility are more important than efficiency.
> Raw materials:
diversity increases resilience.

Passenger car / Light commercial vehicle

Medium-duty truck

Heavy-duty truck

TWO ELECTRIC VEHICLES - DIFFERENT ENERGY STORAGE.

CUSTOMER USE CASES OF HYDROGEN VEHICLES.

INFRASTRUCTURE PERSPECTIVE: 2 ARE MORE ECONOMICALTHAN 1. EXAMPLE: GERMANY.

Conclusions

> Initial cost for electric charging is low - but it increases non-linearly with the number of vehicles.
$>$ The cost for a hydrogen refueling station depends mainly on the size and remains constant in the roll-out.

Comparative Analysis of Infrastructures: Comparative Analysis of Infrastructures:
Hydrogen Fueling and Electric Charging of Vehicles Martion Rocinius, techen unden, Thomas Grube Markss Revi, Peter Stenzch.

INFRASTRUCTURE PERSPECTIVE: 2 ARE MORE ECONOMICALTHAN1. EXAMPLE: EUROPE.

>"Low" scenario costs 20\% less than 100\% BEV.
> "High" scenario with costs 34% less than 100% BEV.
A combined H_{2} refueling infrastructure for commercial vehicles and passenger cars is most cost efficient.

Total investments for non-current assets until 2050
BEV \square FCEV \square 1,563

A GLOBAL INFRASTRUCTURE NETWORK OF HYDROGEN REFUELING STATIONS IS DEVELOPING WORLDWIDE (AS OF 3/2023).

INFRASTRUCTURE: EUROPEAN PERSPECTIVE.

> Until end of 2030, hydrogen refueling stations will be build at intervals of 200 km and at every urban node. That includes 700 bar points for passenger cars. In total over 600 hydrogen refueling stations.
> Many modern European Hydrogen Refueling stations already feature:
$\checkmark 24 / 7$ automated operation (refueling done by driver/customer)
\checkmark High availability (shown online in H2-Mobility databank, with maintenance announced ahead)

ENERGY SYSTEM: "SUN-TO-WHEEL".

>BEVs are more efficient than FCEVs due to the conversion losses.
> Higher yield of renewable energy production in certain regions compensates for the losses.

Cost and feasibility are more important than efficiency.

ENERGY SYSTEM. CURTAIL OR PRODUCE H_{2} ?

> Renewable energy production fluctuates \rightarrow more production capacity required than average consumption.
> Excess energy can be curtailed - or used to produce hydrogen.
> 10% extra is available at least - almost for free (after the investment).
> ~ 5,8 TWh not fed into the grid in 2022.

HIGHER PERSPECTIVE THAN EFFICIENCY: GREEN HOUSE GAS EMISSION LIFE CYCLE ANALYSIS.

> FCEV and BEV are similar in LCA, as several studies and assessments have shown.
> BEVs and FCEVs only help decarbonise road transport when produced and operated with renewable or low-carbon energy.
> Even when accounting for the additional emissions from long-distance LH_{2} shipping, FCEV and BEV have similar lifecycle emissions.

${ }^{1}$ ADAC: https://www.adac.de/verkehr/tanken-kraftstofff-antrieb/alternative-antriebe/klimabilanz/
${ }^{2}$ Fraunhofer: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/news/2019/ISE_LCA-BEV-FCEV-Results.pdf
${ }^{3}$ HydrogenCouncil: https://hydrogencouncil.com/wp-content/uploads/2021/10/Transport-Study-Full-Report-Hydrogen-Council-1.pdf

LIFE CYCLE AND RAW MATERIALS PERSPECTIVE:

 DIVERSITY INCREASES RESILIENCE.
> Diversity increases resilience and decreases risk.

> FCEV need > 100kg less raw materials than BEVs.
> FCEV batteries need 90\% less critical raw materials than BEV batteries.

Circularity is important for BEVs and FCEVs alike.

> Platinum (main raw material for fuel cells) already has high recycling rate, which will increase with phase-out of combustion engines.

PRODUCTION OF THE BMW iX5 HYDROGEN AND THE BMW-DEVELOPED FUELCELL SYSTEMS TAKES PLACE IN-HOUSE.

BMW iX5 HYDROGEN.
THE EV WITH FAST REFUELING.

ROBERTHALAS

Project Manager iX5 Hydrogen

BMW iX5 HYDROGEN.
 ALL ADVANTAGES OF ELECTRIC DRIVING.

> Hydrogen fuel cell technology provides all advantages of electric driving:
>) Great acceleration \gg Zero emission \$) Smooth, silent ride

BMW iX5 HYDROGEN. REFUELING WITH HYDROGEN IS EASY.

> The main advantage of a hydrogen powertrain is fast refueling.
> Filling up the hydrogen tanks only takes three to four minutes.

BMW iX5 HYDROGEN. BMW DRIVING DYNAMICS. WORLD'S MOST POWERFUL PASSENGER VEHICLE FUEL CELL SYSTEM

HIGH POWER

 BATTERY

BMW iX5 HYDROGEN.

 HYDROGEN FUEL CELL DRIVE TRAIN.Ane

> Hydrogen Tanks
(6 kg total)
> BMW iX Electric Motor (295 kW)

BMW iX5 HYDROGEN. HYDROGEN FUEL CELL SYSTEM.

BMW iX5 HYDROGEN. FUEL CELL TECHNOLOGY.

BMW iX5 HYDROGEN. TECHNICAL DATA.

Electrical power fuel cell	$125 \mathrm{~kW} / 170 \mathrm{hp}$
Total power output	$295 \mathrm{~kW} / 401 \mathrm{hp}$
Hydrogen tank capacity	$\approx 6 \mathrm{~kg}$
Range (WLTP)	$\approx 500 \mathrm{~km}$
Maximum speed	$\approx 185 \mathrm{~km} / \mathrm{h}$
Acceleration $(0-100 \mathrm{~km} / \mathrm{h})$	$<6 \mathrm{~s}$
Vehicle weight	\approx comparable PHEV
<comparable BEV	

HयロRロ■EN/FUELCELL

BMW iX5 HYDROGEN.
 SPECIFIC EXTERIOR AND INTERIOR DESIGN ELEMENTS.

BMW iX5 HYDROGEN EXTENSIVE TESTING OVER THE PAST 4 YEARS HAS BEEN SUCCESSFULLY COMPLETED.

